Appendix 2.5: Provision of medicinal plant resources in Europe and Central Asia

Introduction

This appendix provides more detail about the assessment approach for the medicinal plants section. This includes results from the literature review on medicinal plants and the expert elicitation that reviewed the collated information which was presented in the Second Order Draft of the assessment, with in addition some focused elicitation questions regarding evidence and key recommendations.

For the specific literature review on medicinal plants, we built on the recent state of knowledge (SoK) review coordinated by WHO and CBD ((World Health Organization & Secretariat of the Convention on Biological Diversity, 2015)). We only searched the period 2014 – February 2017 in order to update the SoK. We looked for reviews only, adding some non-review papers if relevant. For medicinal plants, exceptionally, we also included non-review papers. Further, we added two regional categories: General region (e.g. Europe, Balkan, Mediterranean region) and Marine. We used the following specific search string for medicinal plants:

(TS=("biological diversity" OR biodivers* OR "living natural resource*" OR "living resource*" OR "natur* diversity" OR "diversity in nature" OR "*species diversity" OR "diversity of species" OR "habitat diversity" OR "diversity of habitat*" OR "int*-speci* diversity" OR "genetic diversity" OR "diversity of gene*" OR "landscape diversity" OR "diversity of landscape*" OR ecosystem* OR "ecological system*" OR "ecosystem service*" OR "landscape service*" OR "environmental service*" OR "ecological service*" OR "natur* capital*" OR "nature based solution*" OR "environmental capital*" OR "green infrastructure" OR greenspace* OR "green space*" OR "blue infrastructure" OR bluespace* OR "blue space*" OR flora* OR fauna* OR wildlife OR "natural habitat*" OR "ecological habitat" OR "wildlife habitat*" OR "invasive * species" OR biogeograph* OR "bio-geograph*" OR "natur* space*" OR "natur* environ*")) NOT (TS=("the nature of" OR "*power plant*" OR "*hydro plant" OR "*nuclear plant" OR "*electric plant" OR "*thermal plant" OR "*coal plant" OR "*fired plant") OR TI=(America* OR "US" OR Africa* OR Russia OR Australia* OR Oceania*)) AND ((TS=("biodiversity for medicine" OR "biodiversity for food and medicine" OR "biological diversity for medicine" OR "biological diversity for food and medicine" "biodiversity-based medicin*" OR "biodiversity-derived medicin*" OR bioprospecting OR "biodiversity-based prospecting" OR "biodiversity based prospecting" OR "prospecting from natur*" OR "medicine* from natur*" OR "medicine* derived from natur*" OR "medicinal species" OR "medicinal plant*" OR "medicinal and aromatic plant*" OR "medicinal animal*" OR "medicinal fung*") OR (TS=(("animal model*" OR "biomedical model*" OR "ecologic* model*" OR "plant model*" OR "wildlife model*" OR "biomedical research" OR biomim*ic* OR "comparative anatom*" OR "comparative audiolog*" OR "comparative biochemistry" OR "comparative dolorolog*" OR "comparative immunolog*" OR "comparative endocrinolog*" OR "comparative neurolog*" OR "comparative oncolog*" OR "comparative opthalmolog*" OR "comparative osteolog*" OR "comparative toxicolog*" OR "innate immunity" OR neurogen* OR "cell regeneration" OR "organ regeneration" OR "tissue regeneration" OR "regeneration research" OR "stem-cell research" OR "wildlife immun*" OR "evo-devo" OR "evo-eco-devo" OR "eco-evo-devo" OR "evolution and development" OR "evolution, ecology and development"))

Why an expert elicitation? The linkages between nature and health are of increasing research and policy interest. Whilst research efforts are increasingly interdisciplinary, there is still a need for greater integration of different fields of expertise and recognition of the importance of accounting for different forms of knowledge, as with other aspects of biodiversity policy ((Pullin, Frampton, & Jongman, 2016)).

With this perspective in mind, in addition to following the literature methodology of this chapter we also engaged in a process of IPBES-approved expert elicitation to strengthen the quality of the assessment and literature review. This also supports a key aim of IPBES, which is to build capacity in this rapidly growing field.

First, we present here the text on medicinal plants as it was presented to the experts taking part in the expert elicitation. We incorporated some key suggestions from reviewers in order to as to not leave the valuable review comments without use and to the extent practically feasible at this stage: we consider more structural changes not very useful at this stage, as we had to drastically downsize the assessment text on medicinal plants and we want readers to keep a good understanding of the information basis of the expert elicitation.

Second, we present the questions posed to the experts and the outcomes of the expert elicitation.

Literature review results put forward in the expert elicitation

The value of biodiversity as a resource for the production of medicines is perhaps one of the clearest and most readily understood examples of the relationships between the natural world and our health and well-being. Numerous species of plants, animals and fungi have been used to produce traditional therapies since ancient times, and wild flora and fauna continue to support the development of modern pharmaceutical products. This intersection of biodiversity, health and culture is a fertile ground for inter- and transdisciplinary studies, with interest across numerous disciplines including anthropology, health psychology, archaeology, ethnobiology, ethnopharmacy, veterinary, human medicine and others (Heinrichs & Jäger, 2015; Payyappallimana & Subramanian, 2015).

This section considers medicinal plants 1. as part of traditional and local medicinal practices, 2. as the more mainstream use of medicinal plant products which are sold commercially in the ECA region, and 3. as the use of medicinal plants in modern pharmaceutical development. It covers plants which are harvested directly from the wild, as well as those which are grown in home gardens or cultivated commercially at larger scales. It is important to note also that the topic of medicinal plants overlaps in many ways with issues relating to agriculture, food and nutrition, and genetic resources, and that many of the policy and ethical issues associated with medicinal plants converge with issues of equitable access to, and sharing of the benefits from, genetic resources.

Distribution and conservation status of medicinal plants in Europe and Central Asia

A number of sub-regions in Europe are characterized by particularly high medicinal plants species richness, including the Mediterranean region, the Alps and the Pyrenees, the Massif Central in France, the Balkan Peninsula, the Crimean Peninsula and the Carpathian Mountains (**Figure 2.5.1**) (Allen et al., 2014).

Figure 2.5.1: Species richness of selected European medicinal plants. Source: Allen et al. (2014).

While comprehensive data on the conservation status of these species in the entire region is scarce, an assessment of the IUCN Red List status of medicinal vascular plants has recently been undertaken for the EU and for continental Europe ("pan-Europe") (Allen et al., 2014). The report concluded that 2,4 % of the 400 assessed extant medicinal plant species in pan-Europe were threatened – out of them three Vulnerable (VU), six Endangered (EN), but none Critically Endangered (CR) (Allen et al., 2014). However, twenty-five species were considered Data Deficient, meaning that these species can potentially also be threatened. A further eighteen taxa (4.5%) at the pan-Europe level were considered Near Threatened (Allen et al., 2014). As for population trends, 41% of the evaluated four hundred medicinal plants species in Europe were assessed as having a stable population trend and 31% were considered to be declining in population size in Europe (Allen et al., 2014). The same study (Allen et al., 2014) identified collection of plants of the wild and loss of habitat due to residential and commercial development as the most significant threats affecting medicinal plants in Europe. For more detailed information about international and national medicinal plants conservation policy instruments see **Table 2.5.1**.

EU Habitats Directive	Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora		
EU Convention on the Conservation of European Wildlife and Natural Habitats	Bern Convention		
EU Wildlife Trade Regulation	Council Regulation (EC) No 338/97 of 9 December 1996 on the protection of species of wild fauna and flora by regulating trade therein		
Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)	41 medicinal plants species included in the recent European List of Medicinal Plants report are listed in CITES Appendix II (Allen et al., 2014).		
Several national policies e.g. in Bulgaria	770 medicinal plants species were reported in Bulgaria by (Evstatieva, Hardalova, & Stoyanova, 2007), including 180 arboreal plants used in different areas of medicine (Tashev & Tsavkov, 2008)		

At the international level the Convention on Biological Diversity (CBD) provides an overarching framework for conservation of biological diversity and sustainable use of its components. In national CBD reports 12 countries report about medicinal plants (mainly Eastern Europe and Central Asia), be it mentioning different kind of information about these species which makes it difficult to compare (**Table 2.5.2.**).

	· · ·	to mentioning medicinal plants	
Country	Source	Number of medicinal plants	Production
		reported	
Armenia	Fifth national report (2014)	10% of the species composition of the flora of Armenia	
		122 species of macrofungi with pharmacological properties	
Azerbaijan	Fifth national report (2014)	800 plant species of medicinal value, including 150 species used in pharmacology	
Belarus	Fifth national report (2014)	81 medicinal plant species	
Bosnia and Herzegovina	Fifth national report (2014)		3.406.573 kg of medicinal plants and forest fruit was exported in 2010 only
Georgia	Fifth national report (2015)	1200 plant species used as medicinal herbs	
Israel	Fifth national report (2016)	80 kinds of wild plants identified to have medical benefit	
Kazakhstan	Fifth national report (2014)	1525 species of medicinal plants	
Kyrgyzstan	Fifth national report (2014)	More than 200 medicinal plants species used in traditional and official medicine	
Lithuania	Fourth national report (2009)	Over 100 medicinal plants species growing in the forests	Decrease in medicinal plants purchases from 22576 kg in 2004 to 16129 kg in 2008
Republic of Moldova	Fifth national report (2015)	200 species of medicinal plants	
Serbia	Fifth national report (2014)		In 2012 the turnover of medicinal and aromatic herbs amounted to more than 24.5 million dollars, of which the income from export amounted to 19 million dollars
Tajikistan	Fifth national report (2014)	More than 60 varieties of wild- growing medicinal herbs that in one or another form permitted to use by the public health authorities	

Table 2.5.2: ECA region national CBD reports mentioning medicinal plants (N=12).
--

Different studies provide different estimates of the number of medicinal plants growing in Europe and Central Asia but there are no figures available for this entire region. Some sources estimate between

1200 and 1300 medicinal and aromatic plant species to be native to Europe (Lange, 1998). Several studies include relatively high numbers for individual countries (**Table 2.5.3**). In a review of recent scientific literature (2014-Feb 2017), we found a total of 64 relevant scientific publications in English. These studies also display information about plant species, health treatments derived from them as well as some socio-economic information. According to our review, the number of studies is higher in the Mediterranean and Central European region, with Turkey having most publications per country (N=17).

Region	Medicinal species	Source	
Former USSR	Up to 600 species	Землинский 1958	
	200 medicinal plant species	(540, 2006)	
Central Asia	from forest ecosystems only	(FAO, 2006)	
	up to 600 species	(Egamberdieva et al., 2013)	
Turkestan Range in South-	50 medicinal plant taxa	(Pawera., 2016)	
western Kyrgyzstan	So medicinal plant taxa		
Chatkal Biosphere Reserve in	117 medicinal plants	(Egamberdieva et al., 2013)	
Uzbekistan			
Kyrgyzstan	200 species of medicinal	(Eisenmanet al., 2014)	
Kyrgyzstan	vascular plants		
Uzbekistan	600 species of medicinal		
	vascular plants		
Armenia	1700 medicinal plant species	(Zolotnitskaya, 2014)	

Table 2.5.3: Country or region studies	s listing medicinal plants.
--	-----------------------------

Medicinal plant knowledge

Experimental knowledge

In a recent literature search (2014 – Feb 2017) we found 28 publications dealing with experimental medicinal plant studies (**Table 2.5.7**). 16 are focused on establishing evidence for medicinal effectiveness of medicinal plants. Some of these studies specifically focus on establishing evidence regarding local traditional medicinal use in countries where the research was done. Some experimental studies focused on (e.g. chemical or genetic) characterization of medicinal plants. This can e.g. be important for informing local users.

Traditional medicinal knowledge

"Traditional medicine" follows the definition outlined by the World Health Organisation¹, as "the sum total of the knowledge, skills, and practices based on the theories, beliefs, and experiences indigenous to different cultures, whether explicable or not, used in the maintenance of health as well as in the prevention, diagnosis, improvement or treatment of physical and mental illness."

The importance of biodiversity-derived medicines for population health has been widely reported, with the WHO estimating that 70-80% of the global population depend on some form of traditional or indigenous medicinal knowledge for their primary health care (Ekor, 2014). Medicinal plant knowledge in Europe is rooted in a long history of health traditions dating back to ancient Sumerian, Egyptian, Greek, Roman and Arabic medical systems and, over the millennia, has been transmitted from generation to generation through both oral histories and written texts. Plant use has formed the basis of European Traditional Medicine since at least the Middle Ages (fifth to fifteenth centuries AD), with more specialised use of plants, such as homeopathy and the extraction of alkaloids, emerging from the nineteenth Century onwards (Allen et al., 2014; Firenzuoli & Gori, 2007; Petrovska, 2012; C. L. Quave, Pardo-De-Santayana, & Pieroni, 2012). Over time, Chinese, Indian, African and American medicinal plants have entered into the European tradition (Leonti & Verpoorte, 2017). Central Asian herbalism

¹ See: <u>http://www.who.int/medicines/areas/traditional/definitions</u> (accessed 27th February, 2017)

has been strongly influenced by Greek, Indian and Chinese, later by Arabic traditions (Eisenman et al., 2014). While some of these traditions have survived throughout the centuries, many others have changed or disappeared, and new uses of plants have emerged, both from local experience and imported from other traditions. This results in a very rich pharmacopoeias and a profound local knowledge surrounding medicinal plants. Due to the differing traditions the approach towards products of herbal origin is remarkably different from country to country (e.g. (A. Máthé, 2015; Payyappallimana & Subramanian, 2015)).

In a recent literature search (2014 – Feb 2017) we found 25 recent studies focusing on traditional medicinal, either in new ethnobotanical studies in which traditional medicinal knowledge holders are consulted or in review studies take into account traditional medicinal knowledge literature (**Table 2.5.4**). A wide diversity of medicinal plant species are taken into account and also wide ranges of medicinal uses are identified. Several studies conclude the need for more ethnobotanical research on traditional medicinal knowledge. We highlight some purposes of medicinal plants key arguments for ethnobotanical research from recent studies in **Table 2.5.5**.

Table 2.5.4: Recent (2014 – Feb 2017) studies highlighting different purposes of medicinal plant characterization studies.

Region/country	Purpose	Source	
Turkey	Informative for safe usage of the correct plant, when known by different names in different regions	(Hayta, Tasar, Cakilcioglu, & Gedik, 2014)	
Russia	Informative for conservation measures, such as e.g. for genetic resources	(Kholina, Nakonechnaya, Koren, & Zhuravlev, 2014)	
Italy	Salinity stress	(Amiripour, Hashemloian, & Azimi, 2016)	
Poland	Mercury contamination	(Ordak, Wesolowski, Radecka, Muszynska, & Bujalska-Zazdrozny, 2016)	
Romania	Thallium contamination	(Vlaia et al., 2014)	
Kazakhstan	Radio-active contamination	(Aidarkhanova, G. S.; Samatova, I. S.; Khusainov, 2015)	

Table 2.5.5: Arguments in the literature supporting ethnobotanical research

Source	Arguments		
(Güzel, Güzelşemme, &	Development of new medicines and discuss the impact of the rich biodiversity,		
	rich ethnocultural structure and deep historical roots to the ethnomedicinal		
Miski, 2015)	knowledge		
	Preservation of traditional medicinal knowledge is often dependent of an oral		
(Menale et al., 2016)	tradition that allows the persistence of such information. Recovering ancient		
(Menale et al., 2010)	knowledge is very important for preserving ethno-biodiversity and to discover		
	new entities for a further evaluation of their biological activity.		
	Medicinal plants are an invaluable resource for local communities and need to be		
	protected as they contribute to an improvement in living standards and the		
(Jarić et al., 2015)	survival of people threatened by unfavourable demographic trends.		
(Jane et al., 2015)	They warn for over-exploitation, causing some plants to have become		
	exceptionally rare and under threat, leading to the need for their rational use		
	and protection so as to ensure they are still around for future generations		
	From a cultural perspective they point at the potential of cross-cultural		
(Mustafa et al., 2015)	ethnobiological for fostering collaboration and reconciliation among diverse		
	ethnic and religious communities.		
(Pawera et al., 2016)	Authors highlight a gap in documentation of traditional knowledge in Kyrgyzstan,		
(Fawera et al., 2010)	indicating that further studies on the traditional use of wild plant resources could		

	bring important insights into ecosystems' diversity with implications to human
	ecology and bio-cultural diversity conservation in Central Asia.
(Efferth, Banerjee, Paul, Abdelfatah, Arend, Elhassan, Hamdoun, Hamm, et al., 2016)	Authors focus their review on biopirarcy, which is the use of biological resources and/or knowledge of indigenous tribes or communities without sharing with them the revenues generated from any economic exploitation of the resource/knowledge. They argue that the patenting of herbs or natural products by pharmaceutical corporations disregards the ownership of the knowledge possessed by the indigenous communities on how these substances worked, and this is not sufficiently prevented by current treaties and court decisions. They call upon scientists to take responsibility in publishing relevant data, preferably with indigenous communities, thus avoiding patenting by pharmaceutical companies.

From tradition to market, from rural to urban

In our fast-changing environment, resulted especially from an increasing urbanisation and changing agricultural practices, many traditions are disappearing in rural areas, with a profound loss of knowledge, particularly among the younger generations. A high rate of decline of traditional medical knowledge has been highlighted by several European scientific studies (e.g. Quave et al., 2012; Sánchez-Mata, María de Cortes, Tardío, 2016). In some regions direct links have been identified between disappearing traditional farming systems and decline of biodiversity of medicinal plants. On the other hand, increasing interest in preserving traditional forms of knowledge in the face of societal change and globalisation have seen a renewed interest in medicinal plants as a form of cultural heritage (Pardo-de-Santayana, Pieroni, & Puri, 2010).

Outside of local and indigenous communities recent decades have seen an increase in the use of medicinal plants as a form of complementary, non-conventional or alternative forms of medicine (Roberti di Sarsina, 2007; Barata, Rocha, Lopes, & Carvalho, 2016). Reasons cited for this increased attention have included public desire for affordable health remedies, and a perception that "natural" products are somehow safer and more effective than mainstream medicines. These factors have stimulated a rapid expansion of commercial markets for these remedies (FAO, 2005; Leonti & Verpoorte, 2017). The commercialisation of traditional medicines and indigenous medicinal knowledge has seen many of these remedies move from traditional practice to conventional health markets and beyond.

In Europe, many of the medicinal plants widely used and marketed do not belong to its historical medical tradition; markets for medicinal plants and related preparations utilise plants and plant products originating from outside Europe or previously consumed only in some parts of the continent. Migrant populations moving into Europe and Central Asia from other regions have also brought their own traditional knowledge and related medicinal practices with them, and evidence suggests that these communities rely largely on plants and plant products imported from their home countries rather than alternatives which occur naturally from their new home regions (Pieroni et al., 2013; C. L. Quave et al., 2012).

Therefore, there is a need of capacity building on medicinal plant expertise in urban societies. Appropriate education systems, professional assistance, aligned legislations and multidisciplinary science-based evidence regarding local and traditional medicines are needed to ensure safe, responsible, sustainable and rational use of herbal products in order to protect human health and the biodiversity of medicinal plants (Rakotoarisoa, Blackmore, & Riera, 2016). There is a growing need for health systems to recognise the important role which medicinal plants and related aspects of traditional ecological knowledge may play in patient care. This is particularly important for minority groups who may be representative of local or indigenous communities overseas who traditionally rely on medicinal plant species for their primary care. It may be helpful when understanding of traditional medicinal practices is mainstreamed into national public health care systems. This should incorporate

appropriate systems of regulation for products, practices and providers to ensure safety and quality; recording and preservation of traditional knowledge systems; provision of education and training for traditional medicine providers to promote sustainable use of biodiversity, as well as public safety; and close collaboration between biodiversity and health regulators.

Public health perspectives

In addition to their potential role in supporting population health, traditional medicines may provide other social and economic benefits. Since by its nature traditional medicinal knowledge is developed, curated and administered at the local level, it can promote decentralised, community-based and culturally competent healthcare. Research in Tajikistan and Afghanistan has indicated that the use of medicinal plant species contributed significantly to local health sovereignty and security, which was particularly important during a period of social and political instability (Kassam et al., 2010). Where the associated living resources are conserved and sustainably utilised, these practices may also promote biocultural diversity.

As stated above, we can distinguish between the use of medicinal plants as part of traditional medicinal practice, principally utilising wild species or those cultivated at small scales in home gardens, and the use of commercial herbal remedies and supplements, sold either as health treatments or for food. Both cases raise several important issues in public safety (**Table 2.5.6**).

With increased human migration throughout the ECA region, health practitioners are dealing with increased numbers of ethnic minorities, some of whom may still depend on their own traditional health care strategies. Various social, cultural or economic factors may combine to prevent immigrants freely and fully availing of primary care services in their new country of residence; even where these barriers are not significant, continuance of traditional medicinal practices associated with home regions may be considered important in immigrant communities. As already mentioned, research in Europe suggests that some immigrant communities who previously relied more extensively on traditional medicine continue to utilise medicinal plants imported from their home countries in their new country of residence (Pieroni et al., 2013; Quave et al., 2012). This raises a number of further issues for conservation and public health, including those related to the collection, importation, sale and use of plants across borders outside of normal regulatory frameworks. Whilst it appears that migrants utilise medicinal plants and related products imported from their home regions in preference to locally-native alternatives, increasing demand may see alternative plant species being sought migrants' new home environments, presenting a further challenge for sustainable exploitation of living resources.

From a public health perspective, it is important to ensure that traditional medicinal practices that do not use marketed products but instead rely directly on harvested plants are recorded and assessed, and to engage with practitioners to explore and communicate on issues of safety and efficacy. Commercial codes or standards (e.g. for sustainable production and harvesting and for consumer protection) combined with community-based conservation initiatives may help to address these issues, affording legitimacy and protection within the context of wider regulation or standardisation.

Source	Concerns and regulatory issues		
Dhami & Mishra, 2015	Outside of mainstream markets traditional medicines are largely unregulated; most medicinal plant remedies have not been evaluated for safety or efficacy. There is little or no standardisation across traditions regarding the selection or quantities of plant or extract materials, whilst genetic, environmental and seasonal factors can affect the quantity and bioavailability of any pharmacologically active ingredients within a plant.		

Table 2.5.6: Public safety issues related to medicinal plants

Calapai, 2008	Commercially available herbal products, which may be based on traditional practice, are not subjected to the same levels of scrutiny as pharmaceutical or food products. Indeed, it can be difficult for companies marketing medicinal plant products to demonstrate medical efficacy to the extent normally required for pharmaceuticals and foods. In Europe, this resulted in a range of different approaches in different countries until Directives introduced in 1999 and 2004 set out to improve harmonisation. European market access for medicinal plant products is now based on a two-tiered regulatory framework according to the evidence base supporting the purity, safety and efficacy of the product.		
lzzo et al., 2015	Some herbal extracts may be marketed for a single purported effect, and yet preparations may contain several active compounds that might produce a range of potentially undesirable effects if they interact with other herbal products or if they are contra-indicated for mainstream pharmaceuticals or for particular medical conditions		
Chan, 2003; Ekor, 2014	In some areas, although the herbal derivative used may not itself produce a direct risk, the presence of contaminants (e.g. heavy metals, biocides, radionuclides, mycotoxins,)) in the growing environment (in the wild or under cultivation) or introduced during handling or transit, may pose a health risk to the consumer		
Colson & De Broe, 2005; Stickel & Shouval, 2015	The pharmacology of many herbal remedies – if and how well they are absorbed by the body, if and how they produce an effect and indeed whether they are actually safe or effective for specific ailments – is largely unknown, and cases of injury arising from use of herbal medicines have been documented		
Ouedraogo et al., 2012	Given the number of herbal products on the market and relatively low budgets available for research so far, safety assessment has been carried out on relatively few herbs according to modern guidelines		
Shaw et al., 2012; Zhang et al., 2012	The importance of pharmacovigilance in detecting any unfortunate adverse events		
Xu et al., 2013	Given the various distribution channels encountered in different countries, an efficient connection is required to develop pharmacovigilance procedures that may rapidly detect, assess and collect warning signals for adverse events		
De Smet, 2004	Reliance on traditional remedies which are ultimately ineffective for a specific ailment may divert patients from seeking other effective medical advice or suppor thereby endangering patients' health		

Table 2.5.7: Experimental studies on medicinal plants (2014 – Feb 2017) (N=28)

Region	Medicinal plants reported	Ailment categories reported	Method	Source
Armenia (1)	5 medicinal plant species	Armenia has large diversity of flora with many endemic species. In Armenian folk medicine plant materials have been used to treat various microbial diseases since ancient times.	Experimental research: to evaluate antimicrobial efficiency of different parts of five wild plants species which are commonly used in Armenian traditional medicine.	(Ginovyan, Petrosyan, & Trchounian, 2017) "Antimicrobial activity of some plant materials used in Armenian traditional medicine." Bmc Complementary and Alternative Medicine 17
Balkan region (3)	Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well- known aromatic and medicinal Mediterranean plant that is native in coastal regions of the	Antioxidant, anti- inflammatory, fungicidal and bactericidal, virucidal, anti- spasmatic, anti- diabetic,	Experimental research: Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation.	(Rešetnik et al., 2016) "Genetic Diversity and Demographic History of Wild and Cultivated/Naturalise d Plant Populations: Evidence from Dalmatian Sage

	western Balkan and	gastroprotective and		(Salvia officinalis L.,
	southern Apennine Peninsulas and is commonly cultivated worldwide	anti-obesity activity.		Lamiaceae)." Plos One 11(7)
	The plants studied were Hyssopus officinalis, Angelica pancicii, Angelica sylvestris, Laserpitium latifolium, Achillea grandifolia, Achillea crithmifolia, Artemisia absinthium and Tanacetum partheniurn.	The antimicrobial activities of methanolic extracts of the plant tissues against 16 bacterial isolates	The study evaluated the antibacterial activities and antioxidant capacity of eight aromatic plants, indigenous to the flora of the Balkan Peninsula, which are used as medicinal plants in traditional medicine	(Stankovic et al., 2016) "Antibacterial and Antioxidant Activity of Traditional Medicinal Plants from the Balkan Peninsula." Njas- Wageningen Journal of Life Sciences 78: 21-28
	Salvia officinalis (Lamiaceae), common or Dalmatian sage, is a Mediterranean aromatic and medicinal plant used in medicine since ancient times	Not specifically addressed	Experimental research: Knowledge on current genetic patterns and genealogical history of its natural populations is required for both breeding efforts and species conservation.	(Stojanović, Aleksić, Jančić, & Jančić, 2015) "A Mediterranean medicinal plant in the continental Balkans: A plastid DNA-based phylogeographic survey of Salvia officinalis (Lamiaceae) and its conservation implications." Willdenowia 45(1): 103-118.
	Gypsophila trichotoma Wend. (Caryophyllaceae) is a medicinal plant which is protected in Bulgaria by the Biodiversity Law.	Anticancer	Experimental research: Gypsogenic acid, isolated from Gypsophila trichotoma roots, was evaluated for cytotoxic activity.	(Krasteva et al., 2014) "Cytotoxicity of gypsogenic acid isolated from Gypsophila trichotoma." Pharmacognosy Magazine 10(38): 430-433
(Region in) Bulgaria (2)	The review includes the following families: Amaryllidaceae, Fabaceae, Geraniaceae, Lamiaceae, Onagraceae, Ranunculaceae, Rosaceae, Scrophulariaceae and Rhodophyta	A good alternative for overcoming antiviral adverse effects and resistance is the use of natural products which have several major advantages over the currently applied chemotherapeutics. Development of resistant strains to such antivirals is hampered due to	Review research: is to summarize comprehensively the investigations on the antiviral activity of Bulgarian medicinal plants from the past three decades	(Todorov, Hinkov, Shishkova, & Shishkov, 2014)"Antiviral potential of Bulgarian medicinal plants." Phytochemistry Reviews 13(2): 525- 538.

		their complex		[]
		their complex chemical structure and often to their multi-stage mode of action		
	Teucrium chamaedrys L. (Wall germander) is a widely distributed species of Teucrium (Lamiaceae) found in the spontaneous flora of Bulgaria, and some Central and South European countries	This is a medicinal plant with a history of traditional use in Bulgaria and in other Balkan countries for herbal tea and basic medical healing treatments.	Experimental research: in vitro study, chloroform and methanol extracts received by soxhlet extraction as well as methanol extract obtained by thermostat extraction were tested for antiviral activity	(Todorov et al., 2015) "EFFECT OF TEUCRIUM CHAMAEDRYS L. EXTRACTS ON HERPES SIMPLEX VIRUS TYPE 2." Comptes Rendus De L Academie Bulgare Des Sciences 68(12): 1519-1526.
Region in Greece (1)	Greek and Mediterranean species due to the fact that biodiversity is on threat: Basel, Miscanthus, Thymus, Salvia, Hyssopus, Oregano	In spring between the two proposed scenarios of vegetation more effective in reducing temperature seems to be the scenario of cultivating medicinal and aromatic species because it presents the best "temperature behaviour" among the buildings.	Experimental research: In this research, a scenario with absence of vegetation, the current state and two scenarios with different vegetation in urban gardens are analyzed. The first scenario involves horticulture species and the second one the cultivation of aromatic and medicinal species.	(Tsilini, Papantoniou, Kolokotsa, & Maria, 2015) "Urban gardens as a solution to energy poverty and urban heat island." Sustainable Cities and Society 14: 323-333.
Region in Israel (1)	Plants growing in the Judea region are widely used in traditional medicine. Six Judean Plants selected for analysis.	Analysis revealed that many of the plants growing in the Judea region may hold a geroprotective potential	Experimental research. Wide screen of dozens of candidate herbal extracts for their cell protective, wound- healing, anti- inflammatory, and anti-cancer activities	(Budovsky et al., 2014) "Uncovering the Geroprotective Potential of Medicinal Plants from the Judea Region of Israel." Rejuvenation Research 17(2): 134- 139
Including an Italian variety (1)	Rocket (Eruca sativa L.) medicinal plant; two varieties of rocket plants, the Iranian and Italian ones, were studied.	Rocket plant has different medical applications, such as ability to improve the eyesight, subsiding children's coughs and above all, restricting different sorts of intestinal worms In addition, according to clinical reports, its anti- cancer activity inhibiting the production of tumor,	Experimental research regarding soil salinity tolerance.	(Amiripour et al., 2016) "Morpho- physiological responses of Rocket (Eruca sativa L.) varieties to sodium sulfate (Na2SO4) stress: an experimental approach." Acta Physiologiae Plantarum 38(10)

	l .			· · · · · · · · · · · · · · · · · · ·
		liver-protective effects (, anti-inflammatory and anti-ulcer activities, could be attributed to this plant . Besides, the erucin and sulforaphane extracted from rocket caused the prevention and treatment of inflammatory skin diseases.		
Region in Kazakhst an (1)	No specific details mentioned in the abstract	Supporting evidence for pharmacological properties of some species harvested by locals of the region. Further no specific details mentioned in the abstract except for radio-active substances (due to a nuclear test site) contaminating medicinal plants	Experimental research. During the expedition and field works ecological and geobotanic habitat features of dominant species of medicinal plants were studied, and was carried out a description of the experimental areas where plants were sampled for analysis. In laboratory conditions researches were performed to determine the content of Cs-137, Sr-90.	(Aidarkhanova, G. S.; Samatova, I. S.; Khusainov, 2015) "RADIONUCLIDE CONTAMINATION OF MEDICINAL PLANTS IN DISTURBED AND NATURAL NATURAL- ECOLOGICAL SYSTEMS OF CENTRAL KAZAKH UPLAND." Oxidation Communications 38(1): 266-270
Lithuani a (1)	Chamerion angustifolium (L.) Holub	Several medicinal properties: inhibit growth of human prostatic epithelial cells, influence the expression of oestrogen receptor, possess antimicrobial activity, have analgesic properties, modulate phagocyte functions, reduce lipid oxidation, exhibit antifungal activity, possess the immune enhancing properties and distinguish by antioxidant activity.	Experimental research: screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub	(Kaškonienė et al., 2016) "Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania." Natural Product Research 30(12): 1373-1381
Mediterr anean	Thymus longicaulis C. Presl. is a small aromatic plant	Traditionally used as remedy for cold, flu, cough, nephritis and	Experimental research on Influence of seasonal variation on	(Galasso, S., Pacifico, S., Kretschmer, N., Pan, S., Marciano, S.,

region (2)	abundant in Mediterranean macchia with traditional medicinal use. The plant, known for the antimicrobial properties of its essential oils, is a rich source of polyphenol compounds.	abdominal pain. Antioxidant and anti- inflammatory properties.	Thymus longicaulis C. Presl chemical composition and its antioxidant and anti- inflammatory properties	Piccolella, S., Monaco, P., Bauer, 2014) "Influence of seasonal variation on Thymus longicaulis C. Presl chemical composition and its antioxidant and anti- inflammatory properties." Phytochemistry 107:
	Ruta chalepensis L. (Rutaceae) is widespread in the Mediterranean area.	Emmenagogue, anti- fungal, anti- helmintic, anti- inflammatory, anti- radical in colon cancer, anti-bacterial and spasmolytic activities. Recently, the insect repellent activity of R. chalepensis has been emphasised.	Experimental research: To exhaustively characterise the chemical composition of the aerial parts from R. chalepensis plants collected from the wild in Sicily	80-90 (Tedone, Costa, De Grazia, Ragusa, & Mondello, 2014). "Monodimensional (GC-FID and GC-MS) and Comprehensive Two-dimensional Gas Chromatography for the Assessment of Volatiles and Fatty Acids from Ruta chalepensis Aerial Parts." Phytochemical Analysis 25(5): 468- 475.
Region in Poland (1)	A set of 45 samples obtained from 20 medicinal plant species was analyzed	Many literature reports have provided evidence for toxic effects of low levels of mercury in the human body	Experimental research: Seasonal Variations of Mercury Levels in Selected Medicinal Plants Originating from Poland – Spring (4-35 ng/g); Autumn (4-81 ng/g)	(Ordak et al., 2016) "Seasonal Variations of Mercury Levels in Selected Medicinal Plants Originating from Poland." Biological Trace Element Research 173(2): 514-524
A region in	Ninety-six plant samples representing plant organs of 29 medicinal species employed in phytotherapy were collected from the wild flora	The study analyzes the potential of medicinal plants to contribute to an adequate Zn intake and to attenuate dietary Zn deficiencies, and to substantiate Mn and Ni intakes	Experimental research. Zn contents were measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES)	(Antal et al., 2015) "Zinc Across Medicinal Plants from Romanian Biodiversity and the Implications for Human Health." Revista De Chimie 66(2): 236-239
Romania (3)	Two medicinal plants: Cornus mas and Crataegus monogyna	Traditionally known to be efficient in preventing cardiotoxicity.	Experimental research. Compare the phenolic and flavonoid composition of two medicinal plants from the wild flora of Romania	(Badalica-petrescu, Dragan, Ranga, Fetea, & Socaciu, 2014) "Comparative HPLC-DAD-ESI(+)MS Fingerprint and Quantification of Phenolic and Flavonoid

[Composition of
				Composition of Aqueous Leaf
				Extracts of Cornus
				mas and Crataegus
				monogyna, in
				Relation to Their
				Cardiotonic
				Potential." Notulae
				Botanicae Horti
				Agrobotanici Cluj-
				Napoca 42(1): 9-18
			Experimental research:	
			Thallium is one of the	
			most toxic elements,	
			without known	
			biological function in	
			living beings. In the	
			case of TI there are no	
			regulations in prime	(Vlaia et al., 2014)
			matters intended for	"Uptake of Thallium
			phytomedicines, and	by Medicinal Plants:
	50 species of wild-	Thalium as toxic	its monitorization is	First Data for
	growing medicinal	element in medicinal	not performed. The	Romanian Flora and
	plants	plants	present research	Significance to
			provides for the first	Human Health."
			time data on the Tl	Revista De Chimie
			content of over 50	65(10): 1158-1162.
			species of wild-growing	
			medicinal plants,	
			evaluated on human	
			health. 17-26 ng/g	
			Highest content:	
			<i>Echium vulgare,</i> Boraginaceae	
	Wild ginseng, Panax		DUI aginaceae	
	ginseng Meyer, is an			(Chelomina et al.,
	endangered species	Under conditions of		2015) "Variation in
	of medicinal plants.	artificial	Experimental research:	the number of
	The study was on P.	reproduction, the	the study analyzed	nucleoli and
	, ginseng, at artificial	medical properties of	variations within the	incomplete
	plant cultivation. The	ginseng are believed	ribosomal DNA (rDNA)	homogenization of
	roots of wild P.	to have become	cluster to gain insight into the genetic	18S ribosomal DNA
	ginseng Meyer plants	weaker, and the amount of the main	diversity of the	sequences in leaf cells of the cultivated
Region	were sampled from a	biologically active	Oriental ginseng, P.	Oriental ginseng
in Russia	non-protected	compound -	ginseng, at artificial	(Panax ginseng
(2)	natural population in	ginsenosides –	plant cultivation.	Meyer)." Journal of
(~)	Sikhote-Alin	decreases.		Ginseng Research
	mountain range,			40(2): 176-184
	Russian Far East.			
		tonic, stimulant, and	Experimental research:	(Kholina et al., 2014).
	medicinal plant	analgesic agent;	Based on the analysis	"Genetic variation of
	Acanthopanax	antioxidant,	of 17 genes encoding	the relict species
	sessiliflorus (Rupr. et	hypoglycemic, and	the allozyme diversity	Acanthopanax
	Maxim.) Seem.	thrombolytic proper_	of 12 enzyme systems,	sessiliflorus (Rupr. et
	(Araliaceae)	ties and exhibit	data were obtained on	Maxim.) Seem.
		antitumor activity	the genetic variation of	(Araliaceae) in

			a relict of the Tertiary flora, a valuable medicinal plant Acanthopanax sessiliflorus (Rupr. et Maxim.) Seem. (Araliaceae) in the Russian area of its range	Primorsky Krai." Russian Journal of Genetics 50(12): 1264-1270
Region in Spain	21 medicinal or potential medicinal plants sampled from eight different locations on the territory of Spain	antioxidant and antimicrobial activity	Experimental research: In the presented study, a comparative analysis of phenolic compounds, parallel with antioxidant and antimicrobial activity of selected plants from Spanish medicinal flora was conducted	(Stanković, Radić, Blanco-Salas, Vázquez-Pardo, & Ruiz-Téllez, 2016) "Screening of selected species from Spanish flora as a source of bioactive substances." Industrial Crops and Products 95: 493- 501.
Region in Switzerla nd	Rhodiola rosea L.	It has been used for centuries in folk medicine in Scandinavia, Eastern Europe and Asia as a general immune- stimulant: increasing human resistance to fatigue, attention, memory and work productivity.	Experimental research: genetic survey of Rhodiola rosea L. populations from the Swiss Alps based on SSR markers.	(György, Vouillamoz, Ladányi, & Pedryc, 2014) "Genetic survey of Rhodiola rosea L. populations from the Swiss Alps based on SSR markers." Biochemical Systematics and Ecology 54: 137-143
Region in Turkov	Apiaceae are a family of medicinal plants widely used in traditional medicine and they are employed commercially as species or drugs because of their richness on useful secondary metabolites	Therapeutic effects of several medicinal plants and vegetables, which are commonly used in folk medicine against many diseases, are usually attributed to their phenolic contents and their antioxidant ingredients.	Experimental research. Water-distilled essential oils from the aerial parts of Artedia squamata and Malabaila secacul were analysed.	(Bagci & Dogan, 2015) "Composition of the Essential Oils of Two Umbelliferae Herbs (Artedia squamata and Malabaila secacul) Growing Wild in Turkey." Journal of Essential Oil Bearing Plants 18(1): 44-51
in Turkey (7)	Three different Lamium species.	Antimicrobial and Antioxidant Properties of Lamium galactophyllum Boiss & Reuter, L- macrodon Boiss & Huet and L- amplexicaule	Experimental research aimed to screen the possible antimicrobial and antioxidant properties as well as total phenolic, resveratrol and flavonoid contents of extracts of three different Lamium species.	(Erbil, Nurcan; Alan, Yusuf; Digrak, 2014) "Antimicrobial and Antioxidant Properties of Lamium galactophyllum Boiss & Reuter, L- macrodon Boiss & Huet and L- amplexicaule from Turkish Flora." Asian

			Journal of Chemistry 26(2): 549-554
Sweet basil (Ocimum basilicum L., Lamiaceae), an important medicinal plant and culinary herb. It is a condimental plant cultivated in some parts of Turkey but not grown naturally. Basil plants are grown commercially and ornamentally.	Only generally addressed: there is great demand for herbal medicines in developed and developing countries because of their wide biological activity and higher safety margin than synthetic drugs.	Experimental research: genetic variation among basil accessions in Turkey has not been extensively examined with molecular markers. Genetic diversity was determined.	(Giachino et al., 2014) "RAPD and essential oil characterization of Turkish basil (Ocimum basilicum L.)." Plant Systematics and Evolution 300(8): 1779-1791
Melia azedarach L. (Chinaberry) is fleshy fruited small to medium sized tree native to China and North Western India. It grows in Pakistan and Turkey in various areas facing great environmental changes to maintain its survival.	Not specifically addressed	Experimental research: aimed to estimate the genetic variation among the populations of Melia azedarach that were collected from five different locations in Turkey and three different locations in Pakistan	(Rind et al., 2016) "EVALUATION OF GENETIC DIVERSITY AMONG MELIA AZEDARACH L. (MELIACEAE) WITH RAPD MARKERS." Fresenius Environmental Bulletin 25(7): 2374 2382
Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae) - lesser calamint	Not specifically mentioned in abstract	Experimental research: essential oil constituents, antimicrobial and herbicidal assays of lesser calamint	(Ulukanli, Demirci, G Yilmaztekin, 2016) "Essential oil constituents, antimicrobial and herbicidal assays o lesser calamint (Calamintha nepeta (L.) Savi subsp. nepeta) from East Mediterranean Region of Turkey." Biointerface Research in Applied Chemistry 6(6): 1867
Crataegus monogyna, Vitis vinifera, Glycrrhiza glabra, Alnus glutinosa L. gaertn, and Alcea rosea	Anticancer	Experimental research: antiproliferative activities against rat brain tumor (C6) and human cervical cancer (HeLa) cell lines. The results were compared with the standard anticancer drugs.	(Sahin Yaglioglu, Eser, Tekin, & Onal 2016) "Antiproliferative activities of severa plant extracts from Turkey on rat brain tumor and human cervix carcinoma ce lines." Frontiers in Life Science 9(1): 69 74

Region	Medicinal plants	Ailment categories	Method	Source
	reported	reported		
Region in Albania (2)	The uses of 84 botanical taxa were recorded as well as a number of other folk remedies for the treatment of both humans and livestock	Approx. 150 distinct remedies cited for human use, the majority (32) were dedicated to treatment of conditions of the skin (such as burns, wounds, infections, and inflammations), followed by therapies for complaints pertaining to the gastrointestinal (18), urogenital (17), musculoskeletal (15), and respiratory	32 local informants for participation in semi- structured interviews regarding the use of the local flora for food, medicinal, veterinary and ritual purposes. The collected data were compared with findings from previous studies in other but similar regions, also in Bulgaria.	(Pieroni et al., 2014) "Local knowledge on plants and domestic remedies in the mountain villages of Peshkopia (Eastern Albania)." Journal of Mountain Science 11(1): 180- 193
	104 botanical taxa, representing 42 families and 68 genera, were cited by the study participants	(14) systems. Cardiovascular, dermatological, endocrinological, gastrointestinal, general health, gynaecological, andrological, nephrological, urological, musculoskeletal and neurological, ophthalmological, oral and dental, otolaryngological and respiratory	In-depth, semi- structured interviews in five rural communities, in total 107 local participants	(C. Quave & Pieroni, 2015)"A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans." Nature Plants 1(2): 1-6
Region in Bosnia & Herzegovin a (1)	58 species (including two subspecies) from 35 families, which were cited in 307 medicinal, 40 food, and seven material use reports.	Genitourinary system disorders, panacea, pain, and circulatory system disorders, skin/subcutaneous cellular tissue disorders, respiratory system disorders, and several ill-defined symptoms	Individual semi- structured interviews with 25 local community healers.	(Ferrier et al., 2015) "An ethnobotany of the Lukomir Highlanders of Bosnia & Herzegovina." Journal of Ethnobiology and Ethnomedicine 11
Region in Northern Cyprus (1)	47 species (8 medicinal, 18 edible and 21 edible- medicinal); variety of purposes, including medicine (2 %)	Only 'use on aching body parts' is mentioned	135 informants of various ages and backgrounds and with a sound traditional knowledge of the	(Ciftcioglu, 2015) "Sustainable wild- collection of medicinal and edible plants in Lefke region of

Table 2.5.8: Ethnobotanical studies on medicinal plants including traditional knowledge (2014 – Feb 2017) (N=18)

			target plants were interviewed	North Cyprus." Agroforestry Systems 89(5): 917- 931
	The inventory included 106 taxa belonging to 45 families; among these, 87 were wild species and 20 were cultivated species.	Internal applications to treat digestive system disorders, infections and respiratory system disorders mainly, and external applications, especially to treat skin/subcutaneous cellular tissue disorders and injuries.	Semi-structured and open interviews with native people who had strong links with the traditional human activities of the area.	(Fortini, Di Marzio, Guarrera, & Iorizzi, 2016) "Ethnobotanical study on the medicinal plants in the Mainarde Mountains (central- southern Apennine, Italy)." Journal of Ethnopharmacolog y 184: 208-218
Region in Italy (3)	87 plant species belonging to 76 genera and 35 families used as medicine for treating various diseases, both human and veterinary. These plants are very easy to find as they are often cultivated or they are common in the wild.	Cough is the most treated human disease followed by wounds healing. Other ailments mentioned: cold, ear pain, high blood pressure, worm or microbial infection, warts, babies colic, toothache, bronchitis, burns and headache. Most of the plants used for human medicine had more than a single therapeutic use, with e.g. 2 species used in the treatment of 10 ailments, and 24 to solve 2 disorders.	Open and semi- structured interviews with 72 native knowledge holders	(Menale & Muoio, 2014) "Use of medicinal plants in the South-Eastern area of the Partenio Regional Park (Campania, Southern Italy)." Journal of Ethnopharmacolog y 153(1): 297-307
	total number of 132 plant species, belonging to 110 genera and 51 families mentioned for medicinal purposes. 70 are spontaneous or subspontaneous and 62 are cultivated above all in the kitchen gardens or in the apartments, as food or as ornamental. Herbs represent the majority, followed by	The investigated plants were used to cure 116 different human health diseases and 4 veterinary problems. The highest number of plants was recorded for gastrointestinal system (56), followed by skin and cutaneous appendages (55) and respiratory system (48).	Semi-structured and unstructured interviews with 136 persons living in the investigated area.	(Menale et al., 2016) "Ethnobotanical investigation on medicinal plants in the Vesuvio National Park (Campania, Southern Italy)." Journal of Ethnopharmacolog y 192: 320-349

		Deserved in the second		[]
	trees and shrubs or	Regarding specific		
	subshrubs.	ailments, natural		
		remedies are mainly		
		used for treating		
		cough (31.1% of		
		plants cited),		
		followed by		
		bronchitis (21.2%),		
		cold (20.5%),		
		abdominal pains		
		(15.2%), pimples		
		(14.4%), as digestive		
		(12.1%),		
		haemorrhoids and		
		wounds (9.8% each).		
		Regarding the plants		
		used in human		
		medicine, most of		
		them had more than		
		a single use. E.g. one		
		species was used in		
		the treatment of 17		
		ailments and 47		
		entities were used		
		for treating 1		
		ailment. The most		
		common ailments		
		are mainly solved by		
		using cultivated		
		species or very		
		common herbs.		
		The most frequent		(Mustafa et al.,
	Local uses of 114	medicinal uses:		2015) "A cross-
	species were used for	gastrointestinal		, cultural comparison
	medicinal purposes,	(17.8%), respiratory		of folk plant uses
	29 for food (wild food	(15.1%) ailments,	Semi-structured	among Albanians,
Region in	plants), and 20 in	heart disease	interviews with 139	Bosniaks, Gorani
Kosovo	handicraft activities.	(13.6%), illnesses	local people.	and Turks living in
	44 medicinal species	affecting the		south Kosovo."
	included in European	urogenital		Journal of
	Pharmacopoeia.	system (12.4%) and		Ethnobiology and
	· ·	the skin (10.5%).		Ethnomedicine 11
		63 human and three		
		animal ailments.		
		Gastro-intestinal		(Pawera et al.,
		system disorders		2016) "Medical
		most prevalent		ethnobotany of
	A total of 50 medicinal	ailment category.	Participant observation	herbal practitioners
Region in Kyrgyzstan	plant taxa were	Further circulatory	and both semi-	in the Turkestan
	documented,	system disorders,	structured and in-	Range,
	distributed among 46	skeleto-muscular	depth interviews with	southwestern
	genera and 27	system disorders,	10 herbal specialists.	Kyrgyzstan." Acta
	botanical families	skin disorders,		Societatis
		infections/infestatio		Botanicorum
		ns, injuries/wounds,		Poloniae 85(1)
		haemorrhoids,		
	l	immunity disorders,	l	

		respiratory and		
		throat disorders, genito-urinary system disorders, neurological problems, blood system disorders, dental and mouth care problems.		
Region of Serbia (2)	This study identified 128 plants and 2 fungi which are used in ethnomedicine, 5 plant species used in ethnoveterinary medicine, and 16 plants used for 'other' purposes	The most common conditions treated with medicinal plants are respiratory (79), urogenital (53), gastrointestinal (51), skin (43) and those relating to the circulatory system (35).	Open and semi- structured interviews with 66 local people (37 women and 29 men), aged between 49 and 90 (with a mean age of 71). Inclusion criteria: gender balance, permanent residents of the region, and mature adults. Also a comparison with previously published data collected from surrounding regions.	(Jarić et al., 2015) "An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia)." Journal of Ethnopharmacolog y 175: 93-108.
	231 wild plant species of medicinal importance from 172 genera and 62 families, and 101 original preparations were documented	Wound infections, insect/snake bites, blood purification, menstrual and nervous disorders, bronchial/lung catarrhs, cough, cardiac disorders, constipation, diarrhea, urinary infections, rheuma	Interviews with 65 local peasants	(Popović, Smiljanić, Kostić, Nikić, & Janković, 2014) "Wild flora and its usage in traditional phyto-therapy (Deliblato Sands, Serbia, South East Europe)." Indian Journal of Traditional Knowledge 13(1): 9-35
Switzerlan d	A total of 254 medicinal plant species, belonging to 218 genera and 87 families, were recorded in 934 use reports.	Dermatological, respiratory, nervous, and gastrointestinal problems. A large variety of plants are used as tonics for disease prevention and to strengthen the immune system.	Swiss herbalists with broad, empirical medicinal plant knowledge and use were interviewed: 61 expert interviews and 3 group interviews	(Dal Cero, Saller, & Weckerle, 2014, 2015) "Herbalists of Today's Switzerland and Their Plant Knowledge. A Preliminary Analysis from an Ethnobotanical Perspective." Forschende Komplementarmed izin 22(4): 238-245
Region in Turkey (6)	Information about 202 medicinal plant taxa was compiled. Among these plants, 39 have either not yet been	For 93 ailments in following categories: respiratory system, digestive system, dermal, endocrine,	Two separate studies; one was conducted in 1975, interviewing 29 people, and the other was conducted in	(Güzel et al., 2015) "Ethnobotany of medicinal plants used in Antakya: A multicultural

mentioned in	ear, nose and	2011-2013,	district in Hatay
ethnobotanical or medicinal studies, or have been used for a medicinal purpose other than those encountered in a literature review	throat, eye, urogenital, cardiovascular, skeletal- muscular, neurological & psychological, gynaecological, blood and other: anticancer, toothache, jaundice & antipyretic	interviewing 182 people. Also a comparison was done with the data obtained from other regions of Turkey and from other Mediterranean regions.	Province of Turkey." Journal of Ethnopharmacolog y 174: 118-152
84 food plants belonging to 30 families were identified in the region. A large proportion of edible plants are also being used for medicinal purposes.	Not mentioned specifically	Interviews with native people with knowledge of food plants.	(Kaval, Behçet, & Çakilcioğlu, 2015) "Survey of wild food plants for human consumption in Gecitli (Hakkari, Turkey)." Indian Journal of Traditional Knowledge 14(2): 183-190
82 food plants belonging to 28 families; a large proportion of edible plants are also being used for medicinal purposes.	Not mentioned specifically	Interviews with native people with knowledge of food plants.	(Mükemre, Behçet, & Çakılcıoğlu, 2016) "Survey of wild food plants for human consumption in villages of Catak (Van-Turkey)." Indian Journal of Traditional Knowledge 15(2): 183-191
A total of 59 medical plants belonging to 27 families were identified in the region	Many plants are used for analgesia (pain killer) and the treatment of bronchitis, colds, diabetes disease, kidney-stone, peptic and intestinal ulcers.	Interviews with 25 local people. Comparison of the data with data obtained in previous laboratory studies	(Paksoy, Selvi, & Savran, 2016) "Ethnopharmacolo gical survey of medicinal plants in Ulukisla (Nigde- Turkey)." Journal of Herbal Medicine 6(1): 42-48
Information about medicinal use of 55 wild and 15 cultivated plants were collected: 3 plants are not available among the records in the literature	Respiratory tract problem, gastrointestinal disorders, urogenital disorders, cardiovascular disorders, dermatological disorders, diabetes disease, head and	128 local persons knowledge regarding medicinal plants were interviewed. Literature review of the plants included in the study	(Polat et al., 2015) "An ethnobotanical study on medicinal plants in Espiye and its surrounding (Giresun-Turkey)." Journal of Ethnopharmacolog y 163: 1-11

	rheumatic pain, nervous system		(Menale et al.,
A total of 62 food plants belonging to 28 families were identified in the region. Wild plants being used for nutritional purposes are also used for medicinal purposes.	Not specifically mentioned	Interviews with 212 local people with knowledge about food plants	2015) "Survey of wild food plants for human consumption in Elazig (Turkey)." Indian Journal of Traditional Knowledge 14(1): 69-75

Table 2.5.9: Review studies on medicinal plants including traditional knowledge (2014 – Feb 2017)
(N=7)

Decion	Medicinal plants	Ailment categories	Mathad	Courses
Region	reported	reported	Method	Source
Balkan region (1)	Sideritis scardica Griseb. is an endemic species in the Balkan Peninsula	Used in traditional medicine as a loosening agent in bronchitis and bronchial asthma; against the common cold and lung emphysema; in the treatment of inflammation, gastrointestinal disorders and coughs; and as an active constituent of dietary supplements for the prevention of anemia	Review is based on information collected from scientific journals, books, and electronic search. These sources include Scopus, Pubmed, Web of Science, and Google scholar as well as local books on ethnopharmacology and botany of this plant.	(Todorova & Trendafilova, 2014) "Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity." Journal of Ethnopharmacolog y 152(2): 256-265.
Caucasus region Europe (1)	Bladdernut	Antibacterial, antidote, aphrodisiac, antirheumatic, anti- inflammatory, carminative/laxative, cancer medicine, diuretic, hemostatic use, hepatical disorders, general medical purposes, mental and nervous disorders, headaches, against the plague, respiratory disorders skin disorders, warning against toxicity	Critically evaluating the extant literature on material evidence, written historical sources, and ethnographic studies on Staphylea pinnata across Europe.	(Heiss et al., 2014) "A Fistful of Bladdernuts: The Shifting Uses of Staphylea pinnata L. as Documented by Archaeology, History, and Ethnology." Folk Life-Journal of Ethnological Studies 52(2): 95- 136
Europe (1)	Iridaceae	In Europe, traditional healers have recommended the use of aqueous extracts of Iris germanica roots as	This review provides a comprehensive overview on the isolated phytochemicals and reported biological	(Singab et al., 2016) "Shedding the light on Iridaceae: Ethnobotany, phytochemistry and biological activity."

		enemas or topical	activities for the	Industrial Crops
		preparations for	most popular genera	and Products 92:
		arthritic limbs	of Iridaceae.	308-335.
				(Efferth, Banerjee, Paul, Abdelfatah, Arend, Elhassan,
Global including Europa (1)	Medicinal plants in general in relation to traditional knowledge of indigenous communities; no species details	Medicinal effects such as anti-inflammatory, wound-healing or anti-diarrhea activity	An overview of the legal frameworks, and some exemplary cases of biopiracy and bioprospecting	Hamdoun, Jongman, et al., 2016) "Biopiracy of natural products and good bioprospecting practice." Phytomedicine 23(2): 166-173
Region in Italy (1)	45 plant species	95 plant uses (no specific details on medical use)	Study of two datasets of medicinal plants and a dataset of non- medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast.	(Savo, Joy, Caneva, & McClatchey, 2015). "Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy)." Journal of Ethnobiology and Ethnomedicine 11
Three different regions in Granada Spain (1)	325 medicinal plants and 160 food plants	Not addressed	Review of three ethnobotany studies. This paper is focused on the floristic and ecological diversity of the ethnobotanical resources of Granada Province in South Spain.	(Benítez, Molero- Mesa, & González- Tejero, 2016) "A model to analyse the ecology and diversity of ethnobotanical resources: case study for Granada Province, Spain." Biodiversity and Conservation 25(4): 771-789
Switzerland (1)	768 species, i.e. 32% of the vascular plants of the Swiss Flora are documented as medicinal plants. But, 465 formerly documented species do not occur in the ethnobotanical studies and thus seem not to be used any more. Overall, 104 species are documented through all time period.	Not specifically mentioned	Totally 25 herbals from the antiquity, monastic medicine, Renaissance, early modern era and the contemporary time as well as five recent ethnobotanical studies were considered. The choice of modern herbals largely based on interviews with 61 herbalists (unpublished data).	(Dal Cero et al., 2014) "The use of the local flora in Switzerland: A comparison of past and recent medicinal plant knowledge." Journal of Ethnopharmacolog y 151(1): 253-264

	Medicinal plants	medicinal plants (2014 - Ailment categories		6
Region	reported	reported	Method	Source
Greek historical docume nts (1)	40 plants	Several pharmaceutical properties described, such as for treatment of gastric and intestinal ailments, as analgesic, prespiratory and anti- shivering agents.	Taxonomic historical document analysis	(Evergetis & Haroutounian, 2015) "The Umbelliferae (Apiaceae) of Dioscorides annotated in codex Neapolitanus Graecus #1." Journal of Ethnopharma cology 175: 549-566
Region in Italy (1)	408 taxa were identified, of which 332 species, 73 subspecies and 3 varieties, belonging to 275 genera and 74 families. 26 medicinal and aromatic plants	Mentioned uses are e.g.: diuretic, astringent and enlargement of spleen; for diaper rash and to solve respiratory problems, antifungal activity; digestive, antiseptic, balsamic, carminative, and antitussive	Taxonomical research: A floristic study of vascular flora of ancient olive groves	(Perrino, Ladisa, & Calabrese, 2014) "Flora and plant genetic resources of ancient olive groves of Apulia (Southern Italy)." Genetic Resources and Crop Evolution 61(1): 23-53.
Mediterr anean region (1)	22 species representing 11 of the 12 sections recognized within the genus Trigonella were analysed. Traditionally, consumed as fresh vegetable and as spice to add flavor to the Indian cuisines, fenugreek is gaining importance around the world due to its rare medicinal properties.	Fenugreek contains three important chemical constituents with medicinal value; i.e. steroidal sapogenins; galactomannans and isoleucine. These constituents seem to work in a synergistic way to produce health effects and have placed fenugreek among the most commonly recognized "nutraceutical" or health food products.	Taxonomic research. Phylogenetic relationships in 22 species representing 11 of the 12 sections recognized within the genus Trigonella were analyzed using nuclear ITS and plastid trnL-F DNA sequences.	(Dangi, Tamhankar, Choudhary, & Rao, 2016) "Molecular phylogenetics and systematics of Trigonella L. (Fabaceae) based on nuclear ribosomal ITS and chloroplast trnL intron sequences." Genetic Resources and Crop Evolution 63(1): 79-96

Table 2.5.10: Taxonomic studies on medicinal	plants (2014 – Feb 2017) (N=7)

	Ebenus haussknechtii	Ebenus species have been shown to have antifungal, anticonvulsant, antioxidant, and estrogenic activity	Experimental research: in this study, morphological, morphometrical, karyological and detailed pollen morphology of Ebenus haussknechtii endemic to Turkey was studied for the first time	(Hayta et al., 2014) "Morphologic al, karyological features and pollen morphology of endemic Ebenus haussknechtii Bornm. ex HubMor. from Turkey: A traditional medicinal herb." Journal of Herbal Medicine 4(3): 141-146
Region in Turkey (4)	Certain Salvia Species - ten different Turkish Salvia (sage) species	Bactericidal, virucidal, fungistatic, spasmolytic, and anti-hypertention effects are some of the best known therapeutic effects of Salvia. Furthermore, Salvia is a potentially extensive and important source for the production of phytochemical compounds.[Experimental research: Determination of DNA in Certain Salvia Species by Capillary Gel Electrophoresis	(Öncü-Kaya, Uysal, Ozturk, Cenkci, & Tuncel, 2015) "Determinatio n of DNA in Certain Salvia Species by Capillary Gel Electrophoresi s." Journal of Liquid Chromatograp hy & Related Technologies 38(14): 1417- 1425
	The genus Ziziphora L. (Lamiaceae)	Sedative, stomachic, aphrodisiac and carminative uses. Also used to heal wounds or as antiseptics.	Taxonomical research: to determine the palynological and karyological features of these taxa. The pollen morphology and exine structure of Ziziphora species were investigated by light microscope and scanning electron microscope	(Selvi, Satil, Martin, Celenk, & Dirmenci, 2015) "Some evidence for infrageneric classification in Ziziphora L. (Lamiaceae:M entheae)." Plant Biosystems 149(2): 415- 423
	Tanacetum is one of the large genera, belonging to the Anthemideae tribe of Asteraceae	Anti-inflammatory, antihistaminic and insecticidal effects. The essential oils when	Taxanomic research: In this study, anatomical features of six endemic species to Turkey viz.	(Tekin & Kartal, 2016) "COMPARATIV E

family and has	rubbed on skin, repel	Tanacetum	ANATOMICAL
numerous medicinal	insects and have	albipannosum, T	INVESTIGATIO
plants and widely usage	antibacterial and anti-	argenteum subsp.	NS ON SIX
in folk medicine. 6	yeast activity. Roots and	argenteum, T	ENDEMIC
species thereof	rhizomes have been	cappadocicum, T	TANACETUM
	used in the Iranian	densum subsp.	(ASTERACEAE)
	traditional medicine as	sivasicum, T	TAXA FROM
	digestive and stomatic	haussknechtii and T	TURKEY."
	tonic. In addition, aerial	heterotomum, were	Pakistan
	parts, especially the	investigated for the first	Journal of
	leaflets against arthritis,	time	Botany 48(4):
	migraine and asthma (1501-1515.

Table 2.5.11: Socio-economic studies on medicinal plants (2014 – Feb 2017) (N=2)

Region	Medicinal plants reported	Ailment categories reported	Method	Source
Albania (1)	Albania has rich natural resources and appropriate soil and climatic conditions to produce wild and cultivated Medicinal and Aromatic Plants (MAPs). There are more than 300 species of MAPs in the Albanian flora, which are considered important from a natural resource and economic viewpoint.	Not specifically addressed	Socio-economic research: This paper analyzes the MAPs sector in Albania based on expert interviews and desk research. Figures and graphs on export and price trends.	(Imami, Ibraliu, Fasllia, Gruda, & Skreli, 2015) "Analysis of the Medicinal and Aromatic Plants Value Chain in Albania." Gesunde Pflanzen 67(4): 155- 164
Turkey (1)	In Turkey, 500 plant species used for medicinal purpose of which 200 have export potential. The world oregano trade volume is roughly 12-15 thousand tons and Turkey provides 80% of this amount.	Not addressed in detail	Review: the main aim is to show the importance of medicinal and aromatic plants (MAPs) in rural development as an alternative crop	(Samet & Cikili, 2015) "Importance of Medicinal and Aromatic Plants as an Alternative Crop in the Rural Development of Turkey." Journal of Rural and Community Development 10(4): 75-84

Table 2.5.12: Conservation studies on medicinal plants (2014 – Feb 2017) (N=1)

Region	Medicinal plants reported	Ailment categories reported	Method	Source
Region in Italy (1)	Of the total of 2212, folk medicine (32.0%, 709 taxa),	Not specifically addressed	Conservation research: The aim of this study was to construct a solid basis for developing a crop wild relatives (CWR) and wild harvested plants (WHP) conservation strategy at the European and national levels	(Landucci et al., 2014) "A Prioritized Inventory of Crop Wild Relatives and Wild Harvested Plants of Italy." Crop Science 54(4): 1628-1644.

Region	Medicinal plants reported	Ailment categories reported	Method	Source
Poland (1)	Medical mosses	Nowadays bryophytes are a subject of intensive phytochemical studies. It has been proved that they possess real medicinal properties, as many other plants.	Historical botanical research. The paper presents information about the earliest botanical work from Poland, Warsavia physice illustrata which takes bryophytes into account.	(Drobnik & Stebel, 2014) "Medicinal mosses in pre- Linnaean bryophyte floras of central Europe. An example from the natural history of Poland." Journal of Ethnopharmacolog y 153(3): 682-685

Table 2.5.13: Historical botanical studies on medicinal	nlants (2014 – Feb 2017) (N=1)
Table 2.3.13. Historical botanical studies on medicinal	plants (2014 – Feb 2017) (N-1)

Questions of the expert elicitation on medicinal plants

Well established Established but l do not know Inconclusive Unresolved incomplete Key findings from the literature review 1) Indigenous and local knowledge plays an essential role regarding reaping the health benefits of medicinal plants. 2) Collection of plants of the wild and loss of habitat due to residential and commercial development are the most significant threats affecting medicinal plants in Europe. 3) Ethnobotanical research is crucial for a better understanding of the medicinal potential of medicinal plants in the ECA-region. 4) There is a high rate of decline of traditional medical knowledge in the ECA region 5) Because of increasing inward migration into the ECA region from other regions, there is an urgent need to increase understanding of traditional medicinal practices within national public health care systems.

Original questions on characterization of evidence posed to the experts

Original key messages posed to the experts for ranking

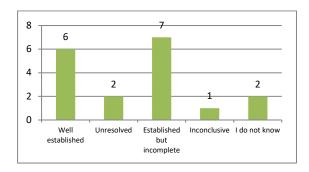
Key message

1) The impact of existing conservation measures and land use strategies on medicinal plants and associated cultural diversity should be further explored. This knowledge could help to improve planning for conservation and sustainable use of medicinal plant species. For example, in some areas the loss of medicinal plant diversity has been linked to disappearance of traditional farming systems; yet little is known about the potential for High Nature Value farmland and related agrobiodiversity conservation strategies to support sustainable management of these species.

2) A broader inter-disciplinary approach is required for policies and practical strategies for conservation of medicinal plant species and associated cultural diversity. This should include development of appropriate education systems, professional assistance and aligned legislations, to ensure safe, sustainable and rational use of herbal products in order to protect human health and the biodiversity of medicinal plants. In particular, greater involvement of the health sector in policy development and implementation on issues related to traditional medicinal knowledge and medicinal plant use is important.

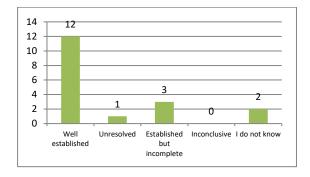
3) More integrated research approaches would be beneficial to better explore the potential health benefits of medicinal plant species, and related issues surrounding safety and sustainable use. This would ideally include topical and methodological integration, e.g. experimental and ethnobotanical studies, but also collaboration between different relevant disciplines.

4) Inventories of medicinal plant species, with details of their conservation status, use and related trends should be maintained at national and regional levels. Information currently available on medicinal plants, their potential benefits, threats to their conservation and the legal basis for their collection and use in the ECA region is incomplete. Improved national efforts for collating relevant information from different sources within and across countries would support more integrated conservation planning at national, regional and international level, and help assess the various health, ecological, environmental, cultural, legal, and socio-economic aspects.

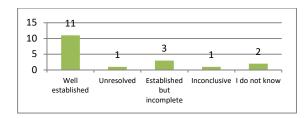

Outcomes of the expert elicitation on medicinal plants

Key findings

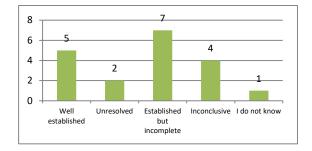
An initial set of eight draft key findings was prepared and submitted to an expert panel for consideration. The key messages as presented here are slightly adapted for improvement of precision and clarity, and they were re-ordered to have a better flow of content. The original key messages are provided above.


1) Indigenous and local knowledge plays an essential role in creating greater understanding of the potential benefits of many plant species to human health. ("Well-established" - "established but incomplete")

2) Collection of plants from the wild and loss of habitat due to physical development and land use change are the most significant threats affecting medicinal plants in Europe and Central Asia. ("Well-established" *)



*"Whilst there was some difference of opinion expressed on this point during the expert elicitation process, we here defer to the body of peer-reviewed evidence, particularly the IUCN European Red List of Medicinal Plants plus other references cited in this section, as the basis for determining the evidence is "well-established" that medicinal plants in the region are most threatened by unsustainable harvesting and land use changes which result in loss or disturbance of habitat."


3) Ethnobotanical research is crucial for a better understanding of the medicinal potential of medicinal plants in the ECA-region. ("Well-established")

4) There is a high rate of decline of traditional medical knowledge in the ECA region. ("wellestablished")

5) Because of increasing inward migration into the ECA region from other regions, there is an urgent need to increase understanding of traditional medicinal practices within national public health care systems. ("Established but incomplete")

Key recommendations

An initial set of four draft key recommendations was prepared and submitted to an expert panel for consideration. Below you find the consensus ranking derived from the individual expert rankings. We should note that experts sometimes disagreed substantially, so this consensus ranking should not be considered as an outcome of negotiation among experts. It was derived from processing by means of a ranking program (AURORA; (Keune, Springael, & Keyser, 2013)).

Ranking	Key message
1	1) The impact of existing conservation measures and land use strategies on
	medicinal plants and associated cultural diversity should be further explored. This
	knowledge could help to improve planning for conservation and sustainable use of
	medicinal plant species. For example, in some areas the loss of medicinal plant
	diversity has been linked to disappearance of traditional farming systems; yet little
	is known about the potential for High Nature Value farmland and related
	agrobiodiversity conservation strategies to support sustainable management of
	these species.
	4) Inventories of medicinal plant species, with details of their conservation status,
	use and related trends should be maintained at national and regional levels. Information currently available on medicinal plants, their potential benefits, threats
	to their conservation and the legal basis for their collection and use in the ECA
	region is incomplete. Improved national efforts for collating relevant information
	from different sources within and across countries would support more integrated
	conservation planning at national, regional and international level, and help assess
	the various health, ecological, environmental, cultural, legal, and socio-economic
	aspects.
2	2) A broader inter-disciplinary approach is required for policies and practical
	strategies for conservation of medicinal plant species and associated cultural
	diversity. This should include development of appropriate education systems,
	professional assistance and aligned legislations, to ensure safe, sustainable and
	rational use of herbal products in order to protect human health and the
	biodiversity of medicinal plants. In particular, greater involvement of the health
	sector in policy development and implementation on issues related to traditional
	medicinal knowledge and medicinal plant use is important. 3) More integrated research approaches would be beneficial to better explore the
	potential health benefits of medicinal plant species, and related issues surrounding
	safety and sustainable use. This would ideally include topical and methodological
	integration, e.g. experimental and ethnobotanical studies, but also collaboration
	between different relevant disciplines.
L	•

References

- Aidarkhanova, G. S.; Samatova, I. S.; Khusainov, M. B. (2015). Radionuclide contamination of medicinal plants in disturbed and natural natural-ecological systems of central kazakh upland. *Oxidation Communications*, 38(1), 266–270.
- Allen, D., Bilz, M., Leaman, D. J., Miller, R. M., Timoshyna, A., & Window, J. (2014). European Red List of Medicinal Plants. http://doi.org/10.2779/907382
- Amiripour, H., Hashemloian, B. D., & Azimi, A. A. (2016). Morpho–physiological responses of Rocket (Eruca sativa L.) varieties to sodium sulfate (Na2SO4) stress: an experimental approach. *Acta*

Physiologiae Plantarum, 38(10), 246. http://doi.org/10.1007/s11738-016-2262-z

- Antal, D. S., Vlaia, V., Dehelean, C. A., Vlaia, L., Trandafirescu, C., Ardelean, F., ... Ionescu, D. (2015).
 Zinc across medicinal plants from Romanian biodiversity and the implications for human health.
 Revista de Chimie (Bucharest, Romania), 66(2), 236–239.
- Badalica-petrescu, M., Dragan, S., Ranga, F., Fetea, F., & Socaciu, C. (2014). Comparative HPLC-DAD-ESI(+)MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 42(1), 9–18.
- Bagci, E., & Dogan, G. (2015). Composition of the Essential Oils of Two Umbelliferae Herbs (*Artedia squamata* and *Malabaila secacul*) Growing Wild in Turkey. *Journal of Essential Oil Bearing Plants*, 18(1), 44–51. http://doi.org/10.1080/0972060X.2014.1001184
- Barata, A. M., Rocha, F., Lopes, V., & Carvalho, A. M. (2016). Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. *Industrial Crops and Products*, 88, 8–11. http://doi.org/10.1016/j.indcrop.2016.02.035
- Benítez, G., Molero-Mesa, J., & González-Tejero, M. R. (2016). A model to analyse the ecology and diversity of ethnobotanical resources: case study for Granada Province, Spain. *Biodiversity and Conservation*, 25(4), 771–789. http://doi.org/10.1007/s10531-016-1092-z

Budovsky, A., Shteinberg, A., Maor, H., Duman, O., Yanai, H., Wolfson, M., & Fraifeld, V. E. (2014).
 Uncovering the geroprotective potential of medicinal plants from the Judea region of Israel.
 Rejuvenation Research, *17*(2), 134–139. http://doi.org/10.1089/rej.2013.1509

Calapai, G. (2008). European Legislation on Herbal Medicines. *Drug Safety*, *31*(5), 428–431. http://doi.org/10.2165/00002018-200831050-00009

Chan, K. (2003). Some aspects of toxic contaminants in herbal medicines. *Chemosphere*, *52*(9), 1361–1371. http://doi.org/10.1016/S0045-6535(03)00471-5

Chelomina, G. N., Rozhkovan, K. V., Voronova, A. N., Burundukova, O. L., Muzarok, T. I., & Zhuravlev, Y. N. (2015). Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer). *Journal of Ginseng Research*, 40(2), 176–184. http://doi.org/10.1016/j.jgr.2015.07.005

Ciftcioglu, G. C. (2015). Sustainable wild-collection of medicinal and edible plants in Lefke region of North Cyprus. *Agroforestry Systems*, *89*(5), 917–931. http://doi.org/10.1007/s10457-015-9824-8

Colson, C. R. D., & De Broe, M. E. (2005). *2Kidney injury from alternative medicines. *Advances in Chronic Kidney Disease*, 12(3), 261–275. http://doi.org/10.1053/j.ackd.2005.03.006

Dal Cero, M., Saller, R., & Weckerle, C. S. (2014). The use of the local flora in Switzerland: A comparison of past and recent medicinal plant knowledge. *Journal of Ethnopharmacology*, *151*(1), 253–264. http://doi.org/10.1016/j.jep.2013.10.035

- Dal Cero, M., Saller, R., & Weckerle, C. S. (2015). Herbalists of Today's Switzerland and Their Plant Knowledge. A Preliminary Analysis from an Ethnobotanical Perspective. *Forschende Komplementärmedizin / Research in Complementary Medicine*, *22*(4), 238–245. http://doi.org/10.1159/000438809
- Dangi, R., Tamhankar, S., Choudhary, R. K., & Rao, S. (2016). Molecular phylogenetics and systematics of Trigonella L. (Fabaceae) based on nuclear ribosomal ITS and chloroplast trnL intron sequences. *Genetic Resources and Crop Evolution*, *63*(1), 79–96. http://doi.org/10.1007/s10722-015-0236-4
- De Smet, P. A. G. M. (2004). Health risks of herbal remedies: An update. *Clinical Pharmacology and Therapeutics*, *76*(1), 1–17. http://doi.org/10.1016/j.clpt.2004.03.005
- Dhami, N., & Mishra, A. D. (2015). Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? *Journal of Herbal Medicine*, *5*(2), 118–127. http://doi.org/10.1016/j.hermed.2015.04.002
- Drobnik, J., & Stebel, A. (2014). Medicinal mosses in pre-Linnaean bryophyte floras of central Europe. An example from the natural history of Poland. *Journal of Ethnopharmacology*, 153(3), 682–

685. http://doi.org/10.1016/j.jep.2014.03.025

- Efferth, T., Banerjee, M., Paul, N. W., Abdelfatah, S., Arend, J., Elhassan, G., ... Jongman, R. (2016). Biopiracy of natural products and good bioprospecting practice. *Phytomedicine*, *23*(2), 166–173. http://doi.org/10.1016/j.phymed.2015.12.006
- Efferth, T., Banerjee, M., Paul, N. W., Abdelfatah, S., Arend, J., Elhassan, G., ... Titinchi, S. J. J. (2016). Biopiracy of natural products and good bioprospecting practice. *Phytomedicine*, *23*(2), 166–173. http://doi.org/10.1016/j.phymed.2015.12.006
- Egamberdieva, D., Mamadalieva, N., Khodjimatov, O., & Tiezzi, A. (2013). Medicinal plants from Chatkal Biosphere Reserve used for folk medicine in Uzbekistan. *Medicinal and Aromatic Plant Science and Biotechnology*, *38*, 56–64. http://doi.org/10.1163/_q3_SIM_00374
- Eisenman, S. W., Zaurov, D. E., & Struwe, L. (2014). *Medicinal plants of Central Asia: Uzbekistan and Kyrgyzstan*. New York: Springer.
- Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Neurology*, *4 JAN*(January), 1–10. http://doi.org/10.3389/fphar.2013.00177
- Erbil, Nurcan; Alan, Yusuf; Digrak, M. (2014). Antimicrobial and Antioxidant Properties of Lamium galactophyllum Boiss & Reuter, L-macrodon Boiss & Huet and L-amplexicaule from Turkish Flora. *Asian Journal of Chemistry*, *26*(2), 549–554.
- Evergetis, E., & Haroutounian, S. A. (2015). The Umbelliferae (Apiaceae) of Dioscorides annotated in codex Neapolitanus Graecus #1. *Journal of Ethnopharmacology*, *175*, 549–566. http://doi.org/10.1016/j.jep.2015.10.016
- Evstatieva, L., Hardalova, R., & Stoyanova, K. (2007). Medicinal plants in Bulgaria : diversity, legislation, conservation and trade, *13*(3), 415–427.
- FAO. (2005). Trade in Medicinal Plants. Rome.
- FAO. (2006). Non Wood Forest Products in Central Asia and Caucasus. Rome.
- Ferrier, J., Saciragic, L., Trakic, S., Chen, E. C. H., Gendron, R. L., Cuerrier, A., ... Arnason, J. T. (2015). An ethnobotany of the Lukomir Highlanders of Bosnia & Herzegovina. *Journal of Ethnobiology* and Ethnomedicine, 11, 16. http://doi.org/10.1186/s13002-015-0068-5
- Firenzuoli, F., & Gori, L. (2007). Herbal medicine today: Clinical and research issues. *Evidence-Based Complementary and Alternative Medicine*, 4(SUPPL. 1), 37–40. http://doi.org/10.1093/ecam/nem096
- Fortini, P., Di Marzio, P., Guarrera, P. M., & Iorizzi, M. (2016). Ethnobotanical study on the medicinal plants in the Mainarde Mountains (central-southern Apennine, Italy). *Journal of Ethnopharmacology*, *184*, 208–218. http://doi.org/10.1016/j.jep.2016.03.010
- Galasso, S., Pacifico, S., Kretschmer, N., Pan, S., Marciano, S., Piccolella, S., Monaco, P., Bauer, R. (2014). Influence of seasonal variation on Thymus longicaulis C. Presl chemical composition and its antioxidant and anti-inflammatory properties. *Phytochem.*, 107, 80–90. http://doi.org/10.1016/j.phytochem.2014.08.015
- Giachino, R. R. A., Sönmez, Ç., Tonk, F. A., Bayram, E., Yüce, S., Telci, I., & Furan, M. A. (2014). RAPD and essential oil characterization of Turkish basil (Ocimum basilicum L.). *Plant Systematics and Evolution*, 1–13. http://doi.org/10.1007/s00606-014-1005-0
- Ginovyan, M., Petrosyan, M., & Trchounian, A. (2017). Screening of some plant materials used in Armenian folk medicine for antimicrobial activity. *BMC Complementary and Alternative Medicine*, 1–9. http://doi.org/10.1186/s12906-017-1573-y
- Güzel, Y., Güzelşemme, M., & Miski, M. (2015). Ethnobotany of medicinal plants used in Antakya: A multicultural district in Hatay Province of Turkey. *Journal of Ethnopharmacology*, *174*, 118–152. http://doi.org/10.1016/j.jep.2015.07.042
- György, Z., Vouillamoz, J. F., Ladányi, M., & Pedryc, A. (2014). Genetic survey of Rhodiola rosea L. populations from the Swiss Alps based on SSR markers. *Biochemical Systematics and Ecology*, 54, 137–143. http://doi.org/10.1016/j.bse.2014.01.012
- Hayta, S., Tasar, N., Cakilcioglu, U., & Gedik, O. (2014). Morphological, karyological features and

pollen morphology of endemic Ebenus haussknechtii Bornm. ex Hub.-Mor. from Turkey: A traditional medicinal herb. *Journal of Herbal Medicine*, *4*(3), 141–146. http://doi.org/10.1016/j.hermed.2014.04.006

Heinrichs, M., & Jäger, A. K. (2015). *Ethnopharmacology*. Wiley Blackwell.

- Heiss, A. G., Filipović, D., Nedelcheva, A., Ruß-Popa, G., Wanninger, K., Schramayr, G., ... Jacomet, S. (2014). A Fistful of Bladdernuts: The Shifting Uses of Staphylea pinnata L. as Documented by Archaeology, History, and Ethnology. *Folk Life: Journal of Ethnological Studies*, 52(2), 95–136. http://doi.org/10.1179/0430877814Z.0000000031
- Imami, D., Ibraliu, A., Fasllia, N., Gruda, N., & Skreli, E. (2015). Analysis of the Medicinal and Aromatic Plants Value Chain in Albania. *Gesunde Pflanzen*, *67*, 155–164. http://doi.org/10.1007/s10343-015-0354-0
- Jarić, S., Mačukanović-Jocić, M., Djurdjević, L., Mitrović, M., Kostić, O., Karadžić, B., & Pavlović, P. (2015). An ethnobotanical survey of traditionally used plants on Suva planina mountain (southeastern Serbia). *Journal of Ethnopharmacology*, 175, 93–108. http://doi.org/10.1016/j.jep.2015.09.002
- Kaškonienė, V., Maruška, A., Akuņeca, I., Stankevičius, M., Ragažinskienė, O., Bartkuvienė, V., ...
 Ugenskienė, R. (2016). Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. *Natural Product Research*, 30(12), 1373–81. http://doi.org/10.1080/14786419.2015.1058792
- Kassam, K.-A., Karamkhudoeva, M., Ruelle, M., & Baumflek, M. (2010). Medicinal Plant Use and Health Sovereignty: Findings from the Tajik and Afghan Pamirs. *Human Ecology*, *38*(6), 817–829. http://doi.org/10.1007/s10745-010-9356-9
- Kaval, İ., Behçet, L., & Çakilcioğlu, U. (2015). Survey of wild food plants for human consumption in Geçitli (Hakkari, Turkey). *Indian Journal of Traditional Knowledge*, *14*, 183–190.
- Keune, H., Springael, J., & Keyser, W. De. (2013). Negotiated Complexity: Framing Multi-Criteria Decision Support in Environmental Health Practice. *American Journal of Operations Research*, 3(1), 153–166. http://doi.org/10.4236/ajor.2013.31A015
- Kholina, A. B., Nakonechnaya, O. V, Koren, O. G., & Zhuravlev, Y. N. (2014). Genetic Variation of the Relict Species Acanthopanax sessiliflorus (Rupr . et Maxim .) Seem . (Araliaceae) in Primorsky Krai, 50(12), 1428–1434. http://doi.org/10.1134/S1022795414120047
- Krasteva, I., Yotova, M., Yosifov, D., Benbassat, N., Jenett-Siems, K., & Konstantinov, S. (2014). Cytotoxicity of gypsogenic acid isolated from Gypsophila trichotoma. *Pharmacogn Mag*, 10(38), S430-3. http://doi.org/10.4103/0973-1296.133299
- Landucci, F., Panella, L., Lucarini, D., Gigante, D., Donnini, D., Kell, S., ... Negri, V. (2014). A prioritized inventory of crop wild relatives and wild harvested plants of Italy. *Crop Science*, *54*(4), 1628–1644. http://doi.org/10.2135/cropsci2013.05.0355
- Lange, D. (1998). *Europe's medicinal and aromatic plants: their use, trade and conservation*. Cambridge.
- Leonti, M., & Verpoorte, R. (2017). Traditional Mediterranean and European herbal medicines. Journal of Ethnopharmacology, 199(October 2016), 161–167. http://doi.org/10.1016/j.jep.2017.01.052
- Materials, R., Service, H. P., Division, T., Quave, C. L., Pardo-De-Santayana, M., Pieroni, A., ...
 Romanelli, Cristina, Cooper, David, Campbell-Lendrum, Diarmid, Maiero, Marina, Karesh,
 William B., Hunter, Danny, Golden, C. D. (2015). Interactions between herbal medicines and
 prescribed drugs. An update systematic review. *Drug Safety*, *12*(2), 1777–1798.
 http://doi.org/10.1016/j.indcrop.2016.02.035
- Máthé, A. (2015). *Medicinal and Aromatic Plants of the World. Scientific, Production, Commercial and Utilization Aspects*. (A. Máthé, Ed.). Springer.
- Menale, B., De Castro, O., Cascone, C., & Muoio, R. (2016). *Ethnobotanical investigation on medicinal plants in the Vesuvio National Park (Campania, Southern Italy). Journal of Ethnopharmacology* (Vol. 192). Elsevier. http://doi.org/10.1016/j.jep.2016.07.049

- Menale, B., & Muoio, R. (2014). Use of medicinal plants in the South-Eastern area of the Partenio Regional Park (Campania, Southern Italy). *Journal of Ethnopharmacology*, *153*(1), 297–307. http://doi.org/10.1016/j.jep.2014.02.039
- Menale, B., Muoio, R., Aleksandrova, M., Lamers, J. P. A. A., Martius, C., Tischbein, B., ... Whiteman, C. (2015). Survey of wild food plants for human consumption in Elazığ (Turkey). *Environment International*, *15*(2), 183–191. http://doi.org/10.13140/RG.2.1.3679.6565
- Mükemre, M., Behçet, L., & Çakılcıoğlu, U. (2016). Survey of wild food plants for human consumption in villages of Çatak (Van-Turkey). *Indian Journal of Traditional Knowledge*, *15*(2), 183–191.
- Mustafa, B., Hajdari, A., Pieroni, A., Pulaj, B., Koro, X., & Quave, C. L. (2015). A cross-cultural comparison of folk plant uses among Albanians, Bosniaks, Gorani and Turks living in south Kosovo. *Journal of Ethnobiology and Ethnomedicine*, *11*, 39. http://doi.org/10.1186/s13002-015-0023-5
- Öncü-Kaya, E. M., Uysal, U. D., Ozturk, N., Cenkci, S., & Tuncel, M. (2015). Determination of DNA in Certain *Salvia* Species by Capillary Gel Electrophoresis. *Journal of Liquid Chromatography & Related Technologies*, *38*(14), 1417–1425. http://doi.org/10.1080/10826076.2015.1053913
- Ordak, M., Wesolowski, M., Radecka, I., Muszynska, E., & Bujalska-Zazdrozny, M. (2016). Seasonal Variations of Mercury Levels in Selected Medicinal Plants Originating from Poland. *Biological Trace Element Research*, *173*(2), 514–524. http://doi.org/10.1007/s12011-016-0645-z
- Ouedraogo, M., Baudoux, T., St??vigny, C., Nortier, J., Colet, J. M., Efferth, T., ... Duez, P. (2012). Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. *Journal of Ethnopharmacology*, *140*(3), 492–512. http://doi.org/10.1016/j.jep.2012.01.059
- Paksoy, M. Y., Selvi, S., & Savran, A. (2016). Ethnopharmacological survey of medicinal plants in Uluklşla (Niğde-Turkey). *Journal of Herbal Medicine*, *6*(1), 1–7. http://doi.org/10.1016/j.hermed.2015.04.003
- Pardo-de-Santayana, M., Pieroni, A., & Puri, R. K. (2010). The Ethnobotany of Europe, Past and Present. In M. Pardo-de-Santayana, A. Pieroni, & R. K. Puri (Eds.), *The Ethnobotany in the New Europe : People, Health and Wild Plant Resources*. (pp. 1–15). New York, NY, USA: Berghahn Books.
- Pawera, L., Verner, V., Termote, C., Kandakov, A., & Karabaev, N. (2016). Medical ethnobotany of herbal practitioners in the Turkestan Range , southwestern Kyrgyzstan. http://doi.org/10.5586/asbp.3483
- Payyappallimana, U., & Subramanian, S. (2015). Traditional medicines. In *Connecting Global Priorities: biodiversity and human health*. WHO World Health Organization and Secretariat for the Convention of Biological Diversity.
- Perrino, E. V., Ladisa, G., & Calabrese, G. (2014). Flora and plant genetic resources of ancient olive groves of Apulia (Southern Italy). *Genetic Resources and Crop Evolution*, *61*(1), 23–53. http://doi.org/10.1007/s10722-013-0013-1
- Petrovska, B. (2012). Historical review of medicinal plants' usage. *Pharmacognosy Reviews*, 6(11), 1– 5. http://doi.org/10.4103/0973-7847.95849
- Pieroni, A., Nedelcheva, A., Hajdari, A., Mustafa, B., Scaltriti, B., Cianfaglione, K., & Quave, C. L. (2014). Local knowledge on plants and domestic remedies in the mountain villages of Peshkopia (Eastern Albania). *Journal of Mountain Science*, *11*(1), 180–193. http://doi.org/10.1007/s11629-013-2651-3
- Pieroni, A., Rexhepi, B., Nedelcheva, A., Hajdari, A., Mustafa, B., Kolosova, V., ... Quave, C. L. (2013).
 One century later: the folk botanical knowledge of the last remaining Albanians of the upper Reka Valley, Mount Korab, Western Macedonia. *Journal of Ethnobiology and Ethnomedicine*, 9(1), 22. http://doi.org/10.1186/1746-4269-9-22
- Polat, R., Cakilcioglu, U., Kaltalio??lu, K., Ulusan, M. D., & T??rkmen, Z. (2015). An ethnobotanical study on medicinal plants in Espiye and its surrounding (Giresun-Turkey). *Journal of Ethnopharmacology*, *163*, 1–11. http://doi.org/10.1016/j.jep.2015.01.008

- Popović, Z., Smiljanić, M., Kostić, M., Nikić, P., & Janković, S. (2014). Wild flora and its usage in traditional phytotherapy (deliblato sands, Serbia, south east europe). *Indian Journal of Traditional Knowledge*, *13*(1), 9–35.
- Pullin, A., Frampton, G., & Jongman, R. (2016). Selecting appropriate methods of knowledge synthesis to inform biodiversity policy, 1285–1300. http://doi.org/10.1007/s10531-016-1131-9
- Quave, C. L., Pardo-De-Santayana, M., & Pieroni, A. (2012). Medical ethnobotany in Europe: From field ethnography to a more culturally sensitive evidence-based cam? *Evidence-Based Complementary and Alternative Medicine*, 2012(July), 17. http://doi.org/10.1155/2012/156846
- Quave, C., & Pieroni, A. (2015). A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. *Nature Plants*, 14021. http://doi.org/DOI: 10.1038/NPLANTS.2014.21
- Rakotoarisoa, N. ., Blackmore, S., & Riera, B. (2016). Botanists of the twenty-first century: roles, challenges and opportunities. In *Botanists of the twenty-first century: roles, challenges and opportunities*. Paris, France.
- Rešetnik, I., Baričevič, D., Batîr Rusu, D., Carović-Stanko, K., Chatzopoulou, P., Dajić-Stevanović, Z., ...
 Šatović, Z. (2016). Genetic Diversity and Demographic History of Wild and
 Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae). *PLOS ONE*, *11*(7), e0159545. Retrieved from
 http://dx.doi.org/10.1371%2Fjournal.pone.0159545
- Rind, N. A., Aksoy, O., Dahot, M. U., Dikilitas, S., Rafiq, M., & Burcak, T. (2016). Evaluation of genetic diversity among Melia azedarach I. (meliaceae) with RAPD markers. *Fresenius Environmental Bulletin*, *25*(7), 2374–2382.
- Roberti di Sarsina, P. (2007). The social demand for a medicine focused on the person: The contribution of CAM to healthcare and healthgenesis. *Evidence-Based Complementary and Alternative Medicine*, 4(SUPPL. 1), 45–51. http://doi.org/10.1093/ecam/nem094
- Sahin Yaglioglu, A., Eser, F., Tekin, S., & Onal, A. (2016). Antiproliferative activities of several plant extracts from Turkey on rat brain tumor and human cervix carcinoma cell lines. *Frontiers in Life Science*, *9*(1), 69–74. http://doi.org/10.1080/21553769.2015.1089949
- Samet, H., & Cikili, Y. (2015). Importance of Medicinal and Aromatic Plants as an Alternative Crop in the Rural Development of Turkey. *Journal of Rural and Community Development*, *10*(4), 75–84.
- Sánchez-Mata, María de Cortes, Tardío, J. (2016). *Mediterranean Wild Edible Plants: Ethnobotany and Food Composition*. New York: Springer-Verlag.
- Savo, V., Joy, R., Caneva, G., & McClatchey, W. C. (2015). Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy). *Journal of Ethnobiology and Ethnomedicine*, *11*, 58. http://doi.org/10.1186/s13002-015-0038-y
- Selvi, S., Satil, F., Martin, E., Celenk, S., & Dirmenci, T. (2015). Some evidence for infrageneric classification in Ziziphora L. (Lamiaceae:Mentheae). *Plant Biosystems*, *149*(2), 37–41. http://doi.org/10.1080/11263504.2013.853701
- Shaw, D., Graeme, L., Pierre, D., Elizabeth, W., & Kelvin, C. (2012). Pharmacovigilance of herbal medicine. *Journal of Ethnopharmacology*, 140(3), 513–518. http://doi.org/10.1016/j.jep.2012.01.051
- Singab, A. N. B., Ayoub, I. M., El-Shazly, M., Korinek, M., Wu, T. Y., Cheng, Y. Bin, ... Wu, Y. C. (2016). Shedding the light on Iridaceae: Ethnobotany, phytochemistry and biological activity. *Industrial Crops and Products*, *92*, 308–335. http://doi.org/10.1016/j.indcrop.2016.07.040
- Stanković, M. S., Radić, Z. S., Blanco-Salas, J., Vázquez-Pardo, F. M., & Ruiz-Téllez, T. (2016). Screening of selected species from Spanish flora as a source of bioactive substances. *Industrial Crops and Products*. http://doi.org/10.1016/j.indcrop.2016.09.070
- Stankovic, N., Mihajilov-Krstev, T., Zlatkovi??, B., Stankov-Jovanovi??, V., Miti??, V., Jovi??, J., ... Bernstein, N. (2016). Antibacterial and Antioxidant Activity of Traditional Medicinal Plants from the Balkan Peninsula. *NJAS - Wageningen Journal of Life Sciences*, 78(2015), 21–28. http://doi.org/10.1016/j.njas.2015.12.006

Stickel, F., & Shouval, D. (2015). Hepatotoxicity of herbal and dietary supplements: an update. *Archives of Toxicology*, *89*(6), 851–865. http://doi.org/10.1007/s00204-015-1471-3

Stojanović, D., Aleksić, J. M., Jančić, I., & Jančić, R. (2015). A mediterranean medicinal plant in the continental balkans: A plastid DNA-based phylogeographic survey of salvia officinalis (Lamiaceae) and its conservation implications. *Willdenowia*, 45(1), 103–118. http://doi.org/10.3372/wi.45.45112

Tashev, A. N., & Tsavkov, E. I. (2008). Medicinal plants of the Bulgarian dendroflora, 14(2), 269–278.

Tedone, L., Costa, R., De Grazia, S., Ragusa, S., & Mondello, L. (2014). Monodimensional (GC-FID and GC-MS) and comprehensive two-dimensional gas chromatography for the assessment of volatiles and fatty acids from ruta chalepensis aerial parts. *Phytochemical Analysis*, *25*(5), 468–475. http://doi.org/10.1002/pca.2518

- Tekin, M., & Kartal, C. (2016). Comparative anatomical investigations on six endemic Tanacetum(Asteraceae) taxa from turkey. *Pakistan Journal of Botany*, *48*(4), 1501–1515.
- Todorov, D., Hinkov, A., Shishkova, K., & Shishkov, S. (2014). Antiviral potential of Bulgarian medicinal plants. *Phytochemistry Reviews*, *13*(2), 525–538. http://doi.org/10.1007/s11101-014-9357-1
- Todorov, D., Pavlova, D., Hinkov, A., Shishkova, K., Dragolova, D., Kapchina-Toteva, V., & Shishkov, S. (2015). Effect of Teucrium chamaedrys L. extracts on herpes simplex virus type 2. *Comptes Rendus de L'academie Bulgare Des Sciences*, *68*, 1519–1526.

Todorova, M., & Trendafilova, A. (2014). Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity. *Journal of Ethnopharmacology*, *152*(2), 256–265. http://doi.org/10.1016/j.jep.2014.01.022

Tsilini, V., Papantoniou, S., Kolokotsa, D. D., & Maria, E. A. (2015). Urban gardens as a solution to energy poverty and urban heat island. *Sustainable Cities and Society*, *14*(1), 323–333. http://doi.org/10.1016/j.scs.2014.08.006

Ulukanli, Z., Demirci, S. C., & Yilmaztekin, M. (2016). Essential oil constituents, antimicrobial and herbicidal assays of lesser calamint (Calamintha nepeta (L.) Savi subsp. nepeta) from East Mediterranean Region of Turkey. *Biointerface Research in Applied Chemistry*, 6(6).

Vlaia, V., Pinzaru, I., Coricovac, D., Andoni, M., Borcan, F., & Antal, D. (2014). Uptake of thallium by medicinal plants: first data for Romanian flora and significance to human health. *Revista de Chimie (Bucharest, Romania)*, 65(10), 1158–1162.

World Health Organization, W., & Secretariat of the Convention on Biological Diversity, C. (2015). Connecting Global Priorities: biodiversity and human health: a state of knowledge review. 1.Biodiversity. WHO, CBD. http://doi.org/10.13140/RG.2.1.3679.6565

 Xu, Q., Bauer, R., Hendry, B. M., Fan, T.-P., Zhao, Z., Duez, P., ... Hylands, P. J. (2013). The quest for modernisation of traditional Chinese medicine. *BMC Complementary and Alternative Medicine*, 13(1), 132. http://doi.org/10.1186/1472-6882-13-132

Zhang, L., Yan, J., Liu, X., Ye, Z., Yang, X., Meyboom, R., ... Duez, P. (2012). Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: Current status and future perspective. *Journal of Ethnopharmacology*, 140(3), 519–525. http://doi.org/10.1016/j.jep.2012.01.058

Zolotnitskaya, S. Y. (2014). Medicinal Flora Resources of Armenia.